

- Provides network connectivity over wireless media
- An Access Point (AP) is installed to act as Bridge between Wireless and Wired Network
- The AP is connected to wired network and is equipped with antennae to provide wireless connectivity

802.11 Wireless LAN

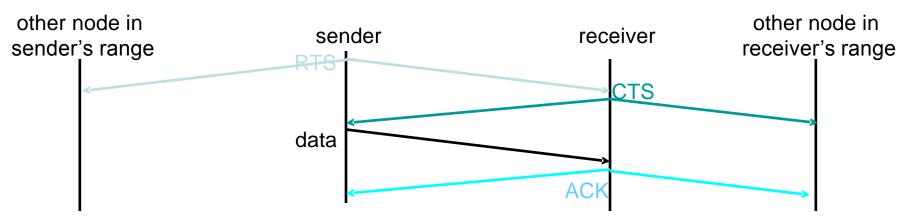

- Range (Distance between Access Point and WLAN client) depends on structural hindrances and RF gain of the antenna at the Access Point
- To service larger areas, multiple APs may be installed with a 20-30% overlap
- A client is always associated with one AP and when the client moves closer to another AP, it associates with the new AP (Hand-Off)

Image: Three flavors:

802.11b 802.11a \Box 802.11g

LAN Technologies

Multiple Access with Collision Avoidance (MACA)

Before every data transmission

- Sender sends a Request to Send (RTS) frame containing the length of the transmission
- Receiver respond with a Clear to Send (CTS) frame
- Sender sends data
- Receiver sends an ACK; now another sender can send data
- When sender doesn't get a CTS back, it assumes collision

WLAN: 802.11b

- The most popular 802.11 standard currently in deployment.
- Supports 1, 2, 5.5 and 11 Mbps data rates in the 2.4 GHz ISM (Industrial-Scientific-Medical) band

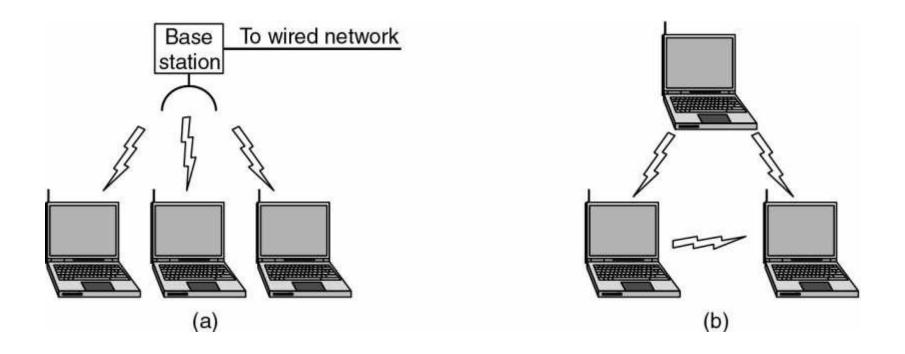
WLAN: 802.11a

Operates in the 5 GHz UNII (Unlicensed National Information Infrastructure) band

- Incompatible with devices operating in 2.4GHz
- Supports Data rates up to 54 Mbps.

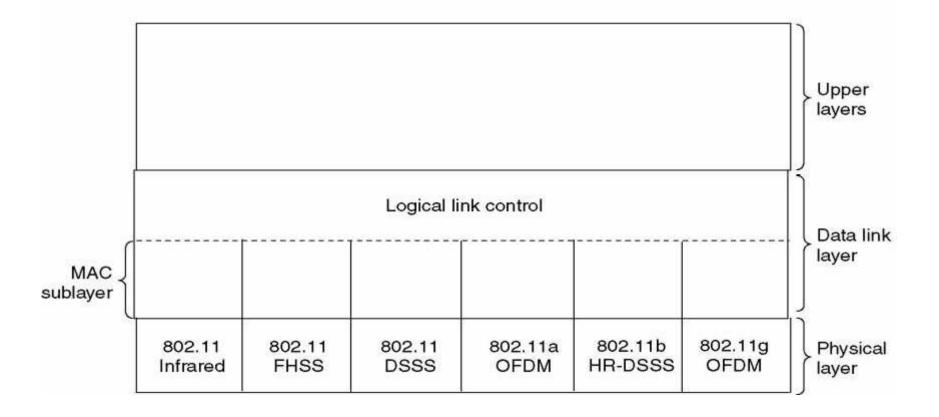
WLAN: 802.11g

- Supports data rates as high as 54 Mbps on the 2.4 GHz band
- Provides backward compatibility with 802.11b equipment


IEEE 802 Standards Working Groups

Number	Торіс
802.1	Overview and architecture of LANs
802.2 ↓	Logical link control
802.3 *	Ethernet
802.4 ↓	Token bus (was briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6 ↓	Dual queue dual bus (early metropolitan area network)
802.7 ↓	Technical advisory group on broadband technologies
802.8 †	Technical advisory group on fiber optic technologies
802.9 ↓	Isochronous LANs (for real-time applications)
802.10↓	Virtual LANs and security
802.11 *	Wireless LANs
802.12↓	Demand priority (Hewlett-Packard's AnyLAN)
802.13	Unlucky number. Nobody wanted it
802.14↓	Cable modems (defunct: an industry consortium got there first)
802.15 *	Personal area networks (Bluetooth)
802.16 *	Broadband wireless
802.17	Resilient packet ring

Categories of Wireless Networks


- Base Station :: all communication through an access point. Other nodes can be fixed or mobile.
- Infrastructure Wireless :: base station network is connected to the wired Internet.
- Ad hoc Wireless :: wireless nodes communicate directly with one another.
- MANETs (Mobile Ad Hoc Networks) :: ad hoc nodes are mobile.

Wireless LANs

.(a) Wireless networking with a base station. (b) Ad hoc networking.

The 802.11 Protocol Stack

Part of the 802.11 protocol stack.

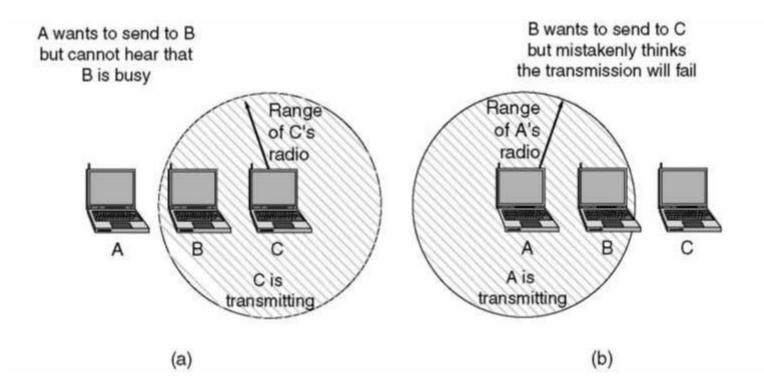
• 802.11 Infrared

- Two capacities 1 Mbps or 2 Mbps.
- Range is 10 to 20 meters and cannot penetrate walls.
- Does not work outdoors.
- 802.11 FHSS (Frequence Hopping Spread Spectrum)
 - The main issue is multipath fading.
 - 79 non-overlapping channels, each 1 Mhz wide at low end of 2.4 GHz ISM band.
 - Same pseudo-random number generator used by all stations.
 - Dwell time: min. time on channel before hopping (400msec).

• 802.11 DSSS (Direct Sequence Spread Spectrum)

- Spreads signal over entire spectrum using pseudo-random sequence (similar to CDMA see Tanenbaum sec. 2.6.2).
- Each bit transmitted using an 11 chips Barker sequence, PSK at 1Mbaud.
- 1 or 2 Mbps.

802.11a OFDM (Orthogonal Frequency Divisional Multiplexing)

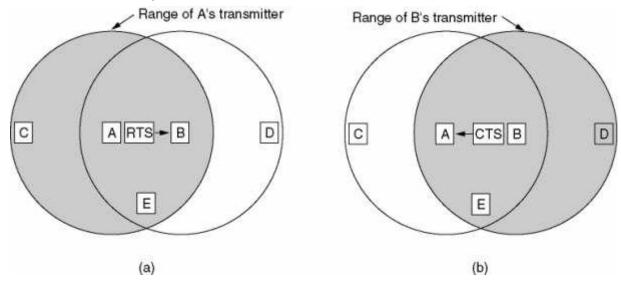

- Compatible with European HiperLan2.
- -54Mbps in wider 5.5 GHz band \rightarrow transmission range is limited.
- Uses 52 FDM channels (48 for data; 4 for synchronization).
- Encoding is complex (PSM up to 18 Mbps and QAM above this capacity).
- E.g., at 54Mbps 216 data bits encoded into into 288-bit symbols.
- More difficulty penetrating walls.

- 802.11b HR-DSSS (High Rate Direct Sequence Spread Spectrum)
 - **11a and 11b** shows a <u>split</u> in the standards committee.
 - 11b approved and hit the market before 11a.
 - Up to 11 Mbps in 2.4 GHz band using 11 million chips/sec.
 - Note in this bandwidth all these protocols have to deal with interference from microwave ovens, cordless phones and garage door openers.
 - Range is 7 times greater than **11a.**
 - 11b and 11a are incompatible!!

- 802.11g OFDM(Orthogonal Frequency Division Multiplexing)
 - An attempt to combine the best of both 802.11a and 802.11b.
 - Supports bandwidths up to 54 Mbps.
 - Uses 2.4 GHz frequency for greater range.
 - Is backward compatible with 802.11b.

802.11 MAC Sublayer Protocol

- In 802.11 wireless LANs, "seizing channel" does not exist as in 802.3 wired Ethernet.
- Two additional problems:
 - Hidden Terminal Problem
 - Exposed Station Problem
- To deal with these two problems 802.11 supports two modes of operation DCF (Distributed Coordination Function) and PCF (Point Coordination Function).
- All implementations must support DCF, but PCF is optional.


.(a)The hidden station problem. (b) The exposed station problem.

Wireless LAN Protocols

- MACA protocol solved hidden, exposed terminal:
 Send Ready-to-Send (*RTS*) and Clear-to-Send (*CTS*) first
 - RTS, CTS helps determine who else is in range or busy (Collision avoidance).
 - Can a collision still occur?

Wireless LAN Protocols

• MACAW added ACKs and CSMA (no RTS at same time)

(a) A sending an RTS to B. (b) B responding with a CTS to A.

1-Persistent Physical Carrier Sensing

- Station senses the channel when it wants to send.
- If idle, station transmits.
 - Station does not sense channel while transmitting.
- If the channel is busy, station defers until idle and then transmits.
- Upon collision, wait a *random time* using binary exponential backoff.

THANK YOU